
Journal of Magnetic Resonance 206 (2010) 227–240
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Exact solution to the Bloch equations and application to the Hahn echo

Alex D. Bain a,*, Christopher Kumar Anand b, Zhenghua Nie c

a Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4M1
b Department of Computing and Software, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4M1
c School of Computational Engineering and Science, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4M1
a r t i c l e i n f o

Article history:
Received 23 June 2010
Revised 16 July 2010
Available online 7 August 2010

Keywords:
Bloch Equations
Lagrange interpolation
Projection operators
Hahn Echo
Measurements of transverse relaxations
Rectangular pulses
Fitting models
1090-7807/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jmr.2010.07.012

* Corresponding author. Fax: +1 (905) 522 2509.
E-mail address: bain@mcmaster.ca (A.D. Bain).
a b s t r a c t

The exact symbolic solution of the Bloch equations is given in the Lagrange form and illustrated with R2

experiments using a Hahn echo. Two different methods are also applied to approximately solve the Bloch
equations, we find that splittings with effective-field interpretations are very substantially better than
other approximations by comparing the errors. Estimates of transverse relaxation, R2, from Hahn echos
are effected by frequency offset and field inhomogeneity. We use exact solutions of the Bloch equations
and simulations to quantify both effects, and find that even in the presence of expected B0 inhomogene-
ity, off-resonance effects can be removed from R2 measurements, when kxk 6 0.5cB1, by fitting the exact
solutions of the Bloch equations. Further, the experiments and simulations show that the fitting models
with the exact solutions of the Bloch equations do not depend on the sampling density and delay times.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Pulse sequences are the core of modern NMR. These consist of
bursts of radiofrequency (rf) irradiation (pulses) followed by peri-
ods of free evolution (delays) [1–3]. Sophisticated combinations of
these manipulations allow us to extract almost all possible infor-
mation about a spin system. For most spin systems, the static en-
ergy levels are well-understood, so it is their evolution in time
during a pulse sequence that most interests us. In order for us to
understand current experiments and design new ones, we need
accurate theoretical descriptions of the dynamics of a spin system.
The projection operator formalism has been applied to treat mo-
tion in quantum mechanics by Löwdin [4], and some solutions of
the density matrix evolution in closed analytical form have been
expressed in the polynomial expressions of exponential operators
using the projection operator formalism [5]. In this paper we con-
centrate on the simplest example, the spin-1

2 system and provide a
full and exact solution. This system is described by the well-known
Bloch equations, which contain the effects of precession, rf irradi-
ation and relaxation [6–10]. Under some simplifying approxima-
tions, solutions to these equations are well-known, but the full
and exact solution is not trivial [11–15]. We apply some method-
ology to work on the matrix form to provide a solution which is
more in keeping with current theory, and which can easily be ex-
ll rights reserved.
tended to more complex systems as the projection operator for-
malism does [5].

The paper is organized as the following. The Section (1)
discusses the challenges of symbolically solving the Bloch equa-
tions, particularly, by the eigen-decomposition method. The
Section (2) gives the full algebraic solution of the Bloch equations
using the Lagrange interpolation. This method can avoid the prob-
lem in computing the inverse of eigenvectors which is discussed in
this section. The explicit solution of the Bloch equations is still un-
wieldy, we present two ways to approximate the solution of the
Bloch equations in Section (3) including approximate eigenvalues
and split-operator methods. Because the operator splittings are
not unique, we show that splittings with effective-field rotations
are better than other approximations by comparing the errors.
Then we illustrate the computation of the Hahn echo by applying
these exact and approximate solutions of the Bloch equations in
Section (4). At last, we demonstrate improvements of measured
R2 by applying the exact solution of the Bloch equations to fit the
experiments of the Hahn echo in Section (5). The appendixes show
the theorems we apply in this paper, solutions of free evolution,
the special case R1 = R2 of the Bloch equations, and some results
of calculations of the Hahn echo.

The most powerful approximation in spin dynamics is to ignore
relaxation, or at least to restrict it to operating only during delays.
This is slightly stronger than the common assumption of hard
pulses. An rf pulse is hard if the rf terms dominate all other inter-
actions, such as off-resonance effects and relaxation. With this
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approximation, a pulse becomes equivalent to a rotation of the
frame of reference, whose effect is relatively easy to calculate. In
the standard product operator formalism [16,17], this is done by
exploiting the simple commutator rules for a spin-1

2. This hard
pulse approximation implies the pulse is instantaneous, so there
is no time for evolution or relaxation to occur. With these approx-
imations we can understand the vast majority of pulse NMR
experiments.

Significant discrepancies arise, however, when numerically sim-
ulating experiments involving modern high-field magnets and cold
probes. In high-field magnets offset effects can be significant, since
the evolution frequencies at the edges of a spectrum can be com-
parable to the rf magnetic field in frequency units. Modern cold
probes give excellent sensitivity, but are often restricted in the
peak power they will tolerate. Relaxation, in normal practice, can
safely be ignored during a single pulse, since the pulse durations
are tens of microseconds. However, many dynamic experiments
rely on measurements of R2, either by R1q or by CPMG methods.
In these cases, significant relaxation may occur during the total
time the rf is on [18,19]. In order to deal with these imperfections,
a number of approaches are available.

If the pulse is relatively long and weak, but relaxation can be ig-
nored, then the behaviour of a single line is well-described by rota-
tion about an effective magnetic field which is not in the xy plane
[20–23]. If we use this as our mathematical model, then a slightly
more complicated analysis of a simple experiment will work. Alter-
natively, we can design more sophisticated composite or shaped
pulses which compensate for off-resonance effects [24–29]. In this
case, a more complicated experiment will lead to a simpler analy-
sis of the data. In this work, we study the former case, with the
simple experiment and the complicated analysis.

We restrict the calculation to a single line NMR spectrum, with-
out any time-dependent terms in the Hamiltonian. The full
description in this case is given by the Bloch equations (Eq. (1))
[7]. These equations contain a number of terms to describe the
evolution and relaxation of the spin system itself and to describe
the interaction with the rf field. The solution we offer here must
be equivalent to the Laplace transform solution [11], since both
are exact. This newer solution is phrased in terms of propagators
and explicit time dependence. In this way, it fits in with the com-
mon ways of working with pulse sequences. Moreover, the method
is entirely general and can be extended to larger systems.

dMx

dt
¼ �xMy þ cB1 sin /Mz �

1
T2

Mx ð1aÞ

dMy

dt
¼ xMx � cB1 cos /Mz �

1
T2

My ð1bÞ

dMz

dt
¼ �cB1 sin /Mx þ cB1 cos /My �

1
T1
ðMz � 1Þ ð1cÞ

In these equations, where x is the resonance offset, c is the gyro-
magnetic ratio, B1 is the strength of the rf pulse (we suppose
cB1 P 0 in this paper), / is the phase of the rf field with respect
to the x axis, T1 is the longitudinal relaxation time, and T2 is the
transverse relaxation time.

There are a number of familiar solutions to these equations in
special cases. The first one is the steady-state solution, which
was needed to explain continuous-wave NMR. The time derivatives
are set to zero and we solve for the steady-state magnetizations
[9,30]. In pulsed NMR, if we have free precession (the rf term is
zero), then the x and y magnetizations oscillate at the Larmor fre-
quency and relax at a rate of 1/T2 and the z magnetization relaxes
back to its non-zero equilibrium value with a rate of 1/T1. If we
have a long T1, the change in the z magnetization is small. We
can often treat the spin–lattice relaxation such that the z magneti-
zation relaxes to zero, rather than a non-zero value, further simpli-
fying the calculations. Under these conditions, we are solving a set
of 3 � 3 matrix equations.

In order to treat the z magnetizations properly, we first convert
the Bloch equations to a homogeneous form [31,32]:

d
dt

Mx

My

Mz

Me

0
BBB@

1
CCCA ¼

� 1
T2

�x cB1 sin / 0

x � 1
T2

�cB1 cos / 0

�cB1 sin / cB1 cos / � 1
T1

1
T1

0 0 0 0

0
BBBB@

1
CCCCA

Mx

My

Mz

Me

0
BBB@

1
CCCA
ð2Þ

where Me is the equilibrium z magnetization which can be set as a
constant number 1. In order to simplify the notations, in the follow-
ing sections, we define b1 � cB1, R1 � 1

T1
; R2 � 1

T2
, A to be the coeffi-

cient matrix and M the vector (Mx,My,Mz,Me)T, where T means
transpose. The matrix A can be seen as a sum of three matrices
which respectively represent the Larmor precession (X), the rf field
(cB1) and the relaxation (R),

A ¼ Xþ cB1 þ R ð3Þ

with

X �

0 �x 0 0
x 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA ð4aÞ

cB1 �

0 0 b1 sin / 0
0 0 �b1 cos / 0

�b1 sin / b1 cos / 0 0
0 0 0 0

0
BBB@

1
CCCA ð4bÞ

R �

�R2 0 0 0
0 �R2 0 0
0 0 �R1 R1

0 0 0 0

0
BBB@

1
CCCA ð4cÞ

Then the Bloch equations can be written as

dMðtÞ
dt

¼ A �MðtÞ ð5Þ

These equations form a system of first-order differential equations,
so if the matrix A is constant in a time interval, they have an analyt-
ical solution in terms of the exponential of the matrix with the gi-
ven initial states [33–37],

MðtÞ ¼ eAtMð0Þ ð6Þ

For simple cases it is straightforward to compute a symbolic solu-
tion, but the full case offers some challenges. A standard and gen-
eral way of calculating a matrix exponential is to first obtain the
eigenvalues and eigenvectors of the matrix,

A ¼ UKU�1 ð7Þ

where K is a diagonal matrix which represents the eigenvalues and
the jth column of U is the vector of eigenvectors corresponding to
the jth diagonal element of K. The matrix of eigenvectors of the ori-
ginal matrix also diagonalizes the exponential of the matrix,

eAt ¼ UeKtU�1 ð8Þ

Provided the original matrix is Hermitian, this is simple because the
inverse of the matrix U is the conjugate transpose of the matrix U.
Relaxation (which destroys the Hermitian character) can be approx-
imated afterwards, provided the terms are small.

The full homogeneous Bloch equations are not Hermitian. This
means that both the eigenvalues and eigenvectors may be complex
numbers. For the eigenvalues, this is clearly appropriate, since the
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imaginary part of the exponential gives the oscillation and the real
part gives the decay. A similar situation occurs in chemical ex-
change calculations [38–40]. The exact eigenvalues are relatively
simple to obtain. They are the roots of the characteristic polyno-
mial associated with the matrix A, which is

pAðkÞ ¼ detðA� kIÞ

¼ k3 þ ðR1 þ 2R2Þk2 þ ðx2 þ b2
1 þ ð2R1 þ R2ÞR2Þk

�
þ b2

1R2 þx2R1 þ R1R2
2Þ

� �
k ð9Þ

Clearly, one eigenvalue is zero, and the other three eigenvalues are
the roots of the cubic polynomial which is the same as Eq. (12) of
[12] and Eq. (21) of [14]. The formula for the roots of a cubic poly-
nomial is not trivial, but is readily available [41]. [12,14] also give
the roots of this specific cubic polynomial. In our computation,
the eigenvalues of the matrix A are directly given by the Maple1

function Eigenvalues which are the same as solving pA(k) = 0 by the
Maple function solve. If relaxation dominates and the spin is on-res-
onance, the cubic polynomial has three real roots, but the more com-
mon case, when ðR1 � R2Þ2 < 4b2

1 (the quadratic term in the cubic is
small), the cubic polynomial has one real root and two other conju-
gate complex roots. In the simplest case, the real root is �R1 and the
two complex roots are the two counter-rotating xy magnetizations
which relax as �R2. A more complete discussion of the roots of a gen-
eral cubic polynomial can be found in [41].

To complete the calculation Eq. (8), we also need the eigenvec-
tors. This is more difficult, since not only are the eigenvectors com-
plex-valued, but there is a distinction between left and right
eigenvectors [42]. For the Hermitian case, the inverse of the trans-
formation defined by the eigenvectors is just its adjoint, the com-
plex conjugate transpose. For the non-Hermitian Bloch equations,
we must calculate the inverse explicitly. A computer algebra pro-
gram such as Maple can calculate the roots symbolically and the
eigenvectors. The inverse can be computed, but the expressions
are unmanageable. A different approach to the matrix exponential
is needed.

In the next section, we will show that for these four equations,
the exponential can be exactly expressed as a sum of four products
of matrices—no inverses are needed. We still need the eigenvalues,
but they are available from the characteristic polynomial (Eq. (9)).
This combination gives us an exact symbolic solution of the full set
of Bloch equations, including all the terms.

2. The exact symbolic solution of the Bloch equations

We concentrate on the generalized Bloch equations with all
terms, which is equivalent to including evolution and relaxation
in a pulse. A hard pulse assumes that the offset and relaxation rates
are ignored in the Bloch equations which means X and R are set to
0. This assumption makes the matrix A of a hard pulse equivalent
to an infinitesimal rotation. Its symbolic exponential is therefore a
full rotation matrix. When the evolution is free, we delete the rf
terms in the matrix A (setting cB1 to be 0) and the exponential
of the matrix A is easily calculated, particularly if the relaxation
terms are small. In this subsection, we will concentrate on comput-
ing the exact symbolic solution of eAt, where A has all of these
terms.

Formally, the exponential of a matrix can be defined as its con-
vergent Taylor series [34,36], but this is a poor method of calcula-
tion. Moler and van Loan discuss a number of better approaches,
including approximation theory, eigen decompositions, differential
equations, and the matrix characteristic polynomial to compute
the exponential of a matrix [34], but not all of them can be applied
1 http://www.maplesoft.com.
to compute a symbolic solution of the exponential of a matrix in
general, and the usefulness of the solution varies. For example,
the eigen-decomposition method which was used to compute
the symbolic exponential of a 16-by-16 Liouvillian matrix for eval-
uating the spin echo of a coupled-spin system [43], can be applied
to solve the Bloch equations symbolically, but the solution is
unmanageably large. Although the dimension of the matrix is only
4-by-4 its non-Hermitian character makes the left- and right-
eigenvectors much more complicated, for example, the result of
Maple’s MatrixExponential is 11.2 Megabytes.

Instead of working with the eigen decomposition, we apply the
Lagrange interpolation method [37] which can be seen as applying
the projection operator formalism to compute an exponential in
the matrix form [4,5]. For a finite matrix, this gives an exact
expression of the matrix exponential, but only the eigenvalues
are needed. These are more accessible since they are roots of the
matrix characteristic polynomial as Eq. (9).

The vector of the eigenvalues of the matrix A which are ob-
tained by solving the equation pA(k) = 0 (Eq. (9)) is

k ¼

k1

k2

k3

k4

2
6664

3
7775 ð10Þ

and

k1 ¼ E1=6� 6
E2

E1
� 1=3R1 � 2=3R2 ð11aÞ

k2 ¼ u2 þ iu3 ð11bÞ
k3 ¼ u2 � iu3 ð11cÞ
k4 ¼ 0 ð11dÞ

in which

E1 ¼ �8ðR1 � R2Þð9x2 þ ðR1 � R2Þ2Þ þ 36ðR1 � R2Þb2
1 þ 12

ffiffiffiffiffi
E3

p� �1=3

ð12aÞ

E2 ¼
1
3

x2 þ b2
1

� �
� 1

9
ðR1 � R2Þ2 ð12bÞ

E3 ¼ 12 b2
1 þx2

� �3
þ 24ðR1 � R2Þ2 x2 � 5þ 3

ffiffiffi
3
p

4
b2

1

 !

� x2 � 5� 3
ffiffiffi
3
p

4
b2

1

 !
þ 12ðR1 � R2Þ4x2 ð12cÞ

u2 ¼ �
E1

12
þ 3E2

E1
� R1

3
� 2R2

3
ð12dÞ

u3 ¼
ffiffiffi
3
p

2
E1

6
þ 6

E2

E1

� �
ð12eÞ

are real numbers, and i ¼
ffiffiffiffiffiffiffi
�1
p

. We see that the eigenvalue k1 is a
real number, k2,3 are complex conjugates (u2 ± iu3), and k4 is 0.

As long as the eigenvalues of the matrix A are distinct (Eq. (10)),
according to Theorem 6.1, we have

eAt ¼ ek1t AðA� k2IÞðA� k3IÞ
k1ðk1 � k2Þðk1 � k3Þ

þ ek2t AðA� k1IÞðA� k3IÞ
k2ðk2 � k1Þðk2 � k3Þ

þ

ek3t AðA� k1IÞðA� k2IÞ
k3ðk3 � k1Þðk3 � k2Þ

þ ðA� k1IÞðA� k2IÞðA� k3IÞ
�k1k2k3

ð13Þ

� ek1tL1ðAÞ þ ek2tL2ðAÞ þ ek3tL3ðAÞ þ L4ðAÞ ð14Þ

where I is a 4 � 4 identity matrix, the notation � indicates that (14)
serves to define L1(A), L2(A), L3(A), and L4(A), the Lagrange

http://www.maplesoft.com
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interpolation coefficients which are called projection operators or
projectors in [4,5].

The solution of eAt can be seen as a sum of three matrices with
entries of real numbers: one matrix ek1tL1ðAÞwith decay ek1t , and
one matrix ek2tL2ðAÞ þ ek3tL3ðAÞ with decay eu2t and oscillation
terms cos(u3t), sin(u3t), and the constant matrix L4(A). This tells
that during a square pulse, the magnetization, for example, Mx,
has the following form:

MxðtÞ ¼ c1ek1t þ ðc2 sinðu3tÞ þ c3 cosðu3tÞÞeu2t þ c4 ð15Þ

where cj (j = 1 � � �4) are independent of the time t, but depend on the
spin system, the initial state, the strength and phase of the rf field.
This form of the solution of the Bloch equations has been displayed
in [11]. Furthermore, Eq. (15) tells us that even if t� T2, the trans-
verse magnetization may not fall to 0 and the value will be c4, which
has been observed in [44]. The oscillations of Eq. (15) are sup-
pressed or cancelled out if there are three real roots of pA(k) = 0
which are equivalent to the conditions discussed by Torrey [11].

Eq. (13) is the exact algebraic solution of the Bloch equations
and will be referred to as Model 0 in this paper. Substituting k from
Eqs. (10)–(12) into Eq. (13) and expanding the multiplication of
matrices yeilds an explicit solution which is still inconvenient to
work with. Partial substitution, maintaining k1, u2, u3, E1, E2 and
E3 as named subexpressions (unsubstituted variables) results in a
manageable expression.

It is easy to verify that Eq. (13) is also the solution of the free
evolution when setting b1 to 0 in the matrix A and Eqs. (10)–(12)
(see Appendix B). We cannot simply set x, R1 and R2 of the matrix
A to be zero to get the solution of a hard pulse by Eq. (13) because
the eigenvalues are not distinct, but the solution of a hard pulse
has been widely known as a rotation matrix. In fact, for these
two cases, the solutions can be directly obtained using simpler
methods.

When R1 is equal to R2, the eigenvalues of the matrix A are sim-
ple, and the explicit symbolic solution of eAt by expanding the La-
grange interpolations is completely demonstrated in Appendix C.
Setting R1 = R2 in Eq. (10) gives the first-order approximation of
the eigenvalues with respect to the ratio R1/R2 evaluated at R1/
R2 = 1, thus the solution of the case of R1 = R2 also can be seen as
a first-order approximation of the general solution of the Bloch
equations, which will be discussed in the next section. In the
R1 = R2 case, even if cB1 is time-varying, the solution of the Bloch
equations also can be expressed in a simple way [45].

We can reduce the complexity of the solution by making
approximations. Two different methods are displayed in the next
section. One method is to use exact solutions corresponding to
approximate eigenvalues, another way is to apply the split-opera-
tor method to compute the exponential of a matrix.
3. Approximate solutions of the Bloch equations

3.1. Approximate solutions via approximate eigenvalues

The preceding section gives a method to exactly solve the Bloch
equations, but it is difficult to manipulate the general solution if
intermediate variables are not used. The first- and second-order
approximations of eigenvalues can be applied to calculate approx-
imations of the solution of the Bloch equations by substituting k
with Eqs. (17) and (18) into Eq. (13), respectively. These approxi-
mations have simpler expressions than the exact solution, but it
may be still a challenge to observe interactions between magneti-
zation, spin systems and pulses [11].

Because R1 6 R2 for all spins, supposing R1 = lR2, 0 < l 6 1, thus
0 6 1 � l < 1. The second-order Taylor series of k1, u2 and u3 with
respect to l evaluated at l = 1 are
k1 � �R2 �
x2R2

b2
1 þx2

ðl� 1Þ þ Oððl� 1Þ2Þ ð16aÞ

u2 � �R2 � 1=2
b2

1R2

b2
1 þx2

ðl� 1Þ þ Oððl� 1Þ2Þ ð16bÞ

u3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2

q
þ Oððl� 1Þ2Þ ð16cÞ

Eqs. (16a) and (16b) correspond to Eqs. (8) and (9) of [11], and they
are used as �R1q [46] and �R2q [47], respectively. In fact, Eqs. (11a)
and (12d) should be exact expressions of �R1q and �R2q.

These give us the first-order approximation of the eigenvalues

k �

�R2

�R2 þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

�R2 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q
0

2
666664

3
777775 ð17Þ

and the second-order approximation of the eigenvalues

k �

� b2
1

b2
1þx2 R2 � x2

b2
1þx2 R1

� b2
1þ2x2

2ðb2
1þx2Þ

R2 � b2
1

2ðb2
1þx2Þ

R1 þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

� b2
1þ2x2

2ðb2
1þx2Þ

R2 � b2
1

2ðb2
1þx2Þ

R1 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

0

2
666666664

3
777777775

ð18Þ

with respect to the ratio R1/R2 evaluated at R1/R2 = 1. We see that
the second-order approximation of k1 is the same as �R1q given
by Eq. (1) of [46].

Commonly, R1 is much smaller than R2 so we simply set R1 = 0 in
the eigenvalues, and set R2 = db1, then the Taylor series of k1, u2 and
u3 with respect to d evaluated at d = 0 is

k1 � �
b3

1

b2
1 þx2

dþ Oðd3Þ ð19aÞ

u2 � �1=2
b1 b2

1 þ 2x2
� �
b2

1 þx2
dþ Oðd3Þ ð19bÞ

u3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2

q
þ Oðd2Þ ð19cÞ

and the eigenvalues can be approximated as

k �

� b2
1R2

b2
1þx2

�1=2
b2

1þ2x2ð ÞR2

b2
1þx2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

�1=2
b2

1þ2x2ð ÞR2

b2
1þx2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

0

2
666666664

3
777777775

ð20Þ

which can be obtained from Eq. (18) by setting R1 = 0.
If we set R1 = 0 and R2 = bx, we get the Taylor series of k1, u2 and

u3 with respect to b evaluated at b = 0 as

k1 � �
xb2

1

b2
1 þx2

bþ Oðb3Þ ð21aÞ

u2 � �1=2
x b2

1 þ 2x2
� �
b2

1 þx2
bþ Oðb3Þ ð21bÞ

u3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2

q
þ Oðb2Þ ð21cÞ

and the approximate eigenvalues are the same as Eq. (20).
Eq. (15) demonstrates that the magnetization within a square

pulse is a combined decay rather than a single decay, but the
first-order approximations of the eigenvalues (Eq. (17)) display
that the magnetization during a square pulse mostly is affected
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Fig. 1. Comparing relative errors of different approximations. The relative errors
are calculated as ke(X+Y)t � e(t/2)Xe(t)Ye(t/2)Xk2/ke(X+Y)tk2, the x axis is the ratio of offset
to pulse amplitude (when both are measured in Hz). The numerical computation
uses the dimensionless parameters, b1 = 2000 Hz, tp = 1/(2b1), / = 0, R2/b1 = 0.01, R1/
R2 = 0.2. The figures show that if the absolute value of the offset is smaller than the
amplitude of the pulse, the relative errors of Model 3 and Model 4 are much smaller
than errors of Model 1 and Model 2. The large error of Models 1 and 2 are mainly
due to the fact that z magnetization are poorly described.
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by the effective rf field
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q

while the decay rate is approxi-
mate to R2. The second-order approximation of the eigenvalues
(Eq. (18)) clearly shows how the decay rates during a square pulse
are influenced by the rf field and the offset.

3.2. Approximate solutions via split-operators

In this subsection, we compute eAt using the split-operator
method and explore its implications to understanding soft pulses.
When X and Y do not commute (i.e. [X,Y] � X � Y � Y � X – 0),
e(X+Y)t – eXteYt. But understanding the quality of this approxima-
tion and the nature of the error is still instructive. This approach
has been applied in quantum mechanics [48,49] and in discussions
of excitation pulses [23].

In the following, we compute the approximations of eAt by
applying the second-order split-operator approximation of e(X+Y)t

[48] which is

eðXþYÞt � eðt=2ÞXeðtÞYeðt=2ÞX ð22Þ

Since it is a sum of three matrices X, cB1 and R, the matrix A can be
split into three combinations as a sum X + Y,

A ¼ ðXþ RÞ þ cB1 ð23aÞ
¼ ðXþ cB1Þ þ R ð23bÞ
¼ Xþ ðcB1 þ RÞ ð23cÞ

Eq. (22) shows that we have two approximations if we change the
order of X and Y. So there are six approximate solutions of the Bloch
equations by the second-order split-operator method,

A ¼ ðXþ RÞ þ cB1

� X1 þ Y1 ðModel 1Þ ð24aÞ
A ¼ cB1 þ ðXþ RÞ
� X2 þ Y2 ðModel 2Þ ð24bÞ

A ¼ R þ ðXþ cB1Þ
� X3 þ Y3 ðModel 3Þ ð24cÞ

A ¼ ðXþ cB1Þ þ R
� X4 þ Y4 ðModel 4Þ ð24dÞ

A ¼ Xþ ðcB1 þ RÞ
� X5 þ Y5 ðModel 5Þ ð24eÞ

A ¼ ðcB1 þ RÞ þX

� X6 þ Y6 ðModel 6Þ ð24fÞ

Note that X1 = Y2, Y1 = X2, X3 = Y4, Y3 = X4, X5 = Y6, and Y5 = X6, but
substituting them into Eq. (22) will give different approximations of
eAt. All of the exponentials of these split matrices tXj, tYj (j from 1 to
6) can be easily calculated by classical methods, then Eq. (22) is ap-
plied to compute eAt. Error analysis shows that Model 5 is close to
Model 1, and Model 6 is close to Model 2, so in the following, we
will not analyse Models 5 and 6.

Calculating these approximations of eAt can be seen as dealing
with a soft pulse as different pseudo-pulse sequences. Without loss
of generality, a soft p pulse is used in the Hahn echo to illustrate
these split-operators which are shown in Fig. 4.

If the spin is on-resonance, i.e. x = 0, Model 1 will be the same
as Model 3, and Model 2 will be the same as Model 4. Suzuki has
shown that the error of the approximation e(t/2)Xe(t)Ye(t/2)X of
e(X+Y)t is bounded and the upper bound can be computed by Theo-
rem 6.2 [49]. Comparing expressions and upper bounds of errors
(not shown), when all of offsets and relaxation rates are smaller
than the amplitude of the pulse then, in general, the error bounds
improve in the order: Model 1, Model 2, Model 3, Model 4, but
expression complexity goes up in the same order. Figs. 1 and 2
demonstrate relative errors of approximations of a soft p pulse
against the ratio of the offset over the amplitude of the pulse for
given numerical relaxation parameters. The figures show that er-
rors of Model 3 and Model 4 (where rotation is around the effective
field) are much smaller than errors of Model 1 and Model 2 (in
which the rotation axis is in the xy plane). The errors of Model 1
and Model 2 increase rapidly with the ratio of kx/cB1k being al-
most linear on the interval [�1,1], while the errors of Model 3
and Model 4 are smooth and bounded in this interval. The differ-
ence of errors of Model 3 and Model 4 is very small when the offset
is smaller than the amplitude of the pulse. Splitting the matrix A
into the effective rotation field and relaxation terms provides a
good approximation to a soft pulse when the relaxation ratios
are much smaller than the amplitude of the pulse.
4. Computation of experiments of the Hahn echo

In this section, we will apply the exact and approximate solu-
tions of the Bloch equations to explore effects of a soft echo pulse
on the transverse magnetization. Fig. 3 shows the pulse sequence
of the Hahn echo experiments [50]. We will concentrate on inves-
tigating soft echo pulses, so in the simulations and experiments of
Hahn echo experiments, the excitation p/2 pulse is approximated
by a hard pulse along with the y axis, this means the magnetization
vector after the excitation pulse is M0 = [1,0,0,1]T. Therefore, the
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Fig. 2. Comparing relative errors of different approximations. Labels are the same
as in Fig. 1. The range of pulse amplitude/offset (on the x axis) is restricted to �0.2
to 0.2. This figure demonstrates that even for offsets close to on-resonance, the
errors of Model 1 and Model 2 are much bigger than errors of Model 3 and Model 4.

Fig. 3. The pulse sequence of the Hahn echo experiments. Without loss of
generality, the excitation p/2 pulse is set as a hard pulse along with the y axis.
The delay time between the excitation pulse and the echo pulse is s. The length of
the soft p pulse is tp and the phase cycling scheme of ±x is applied in our
experiments and simulations.

Fig. 4. The approximations of the Hahn echo. The black rectangles represent hard
pulses, the hatching rectangles represent effective rotations. In Model 1, the soft
echo p pulse is approximated by a hard p pulse with two delays of tp/2; in Model 2,
the soft echo p pulse is approximated by two p/2 hard pulses with a delay tp; in
Model 3, the soft echo p pulse is approximated by an effective rotation of

tp
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with two on-resonance delays of tp/2; in Model 4, the soft echo p pulse

is approximated by two effective rotations of tp
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with one on-resonance

delay of tp.
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magnetization or the intensity at the beginning of the acquistion is
a function of seven variables: s, tp, b1, x, /, R1 and R2. The compli-
cated behaviour of the function can be seen from Figs. 6 and 7.

The magnetization at the end of the evolution is computed by

Mt ¼ ExpðAFIDÞ � ExpðApÞ � ExpðAFIDÞ �M0 ð25Þ

where Exp(AFID) (Eq. (B.2)) represents the effective matrix of the
free evolution, Exp(Ap) the effective matrix of a p pulse, which
can be the exact solution or approximate solutions of the soft p
pulse.

If phase cycling is applied in the experiment, the effective ma-
trix Exp(Ap) will be the average of the effective matrices for all
phases. Eqs. (C.5) and (D.1) show that phase cycling of ±x can be
used to make the constant term c4 of Eq. (15) zero and c1, c2 and
c3 independent of the z magnetization which means that the effect
of the longitudinal magnetization on the transverse magnetization
within a square pulse is eliminated, see also [51,52], this may be
helpful to improve the sensitivity of the spectra [53] and the accu-
racy of the measurements of R1 and R2 by 5–15% over the case
where the constant term is not included in the data analysis [51],
and complete the coherence selection [54].

In Appendix D, Mt is calculated with phase cycling or different
phases with exact and approximate solutions of the Bloch equa-
tions. In order to simplify the notations, Model 0 will also be used
to represent the exact solution of the Hahn echo with the exact
symbolic solution of the Bloch equations of a square pulse, Models
1–4 represent approximate solutions of the Hahn echo with
approximate solutions of the Bloch equations of a square pulse
which are computed by Eq. (22) with four different operator spli-
tings (Eqs. (24a)–(24d)) which can be seen as four different pseu-
do-pulse sequences (Fig. 4), respectively.

Generally, the explicit expression of the magnetization Mt with
respect to the offset, true R1 and R2, delay time, the pulse length,
the phase of the pulse, and the amplitude of the pulse can be ob-
tained by substituting the explicit expression of the effective ma-
trix of a soft p pulse (Eq. (14)) into Eq. (25). As we said before,
this explicit expression of Mt will be huge even with the phase cy-
cling. The implicit symbolic expressions of the transverse magneti-
zation of the Hahn echo of a phase cycle of p pulses are given by Eq.
(D.3).

Model 1 approximation can be seen as an echo experiment of
delay (s + tp/2) of using a hard p pulse, thus, the transverse magne-
tization given by this approximation at the beginning of the acqui-
sition will be along with the x axis and its value will be partial of
e�R2ð2sþtpÞ. Mathematically, we could say this approximation is the
first-order approximation of the Hahn echo of a soft echo pulse
with respect to the offset at the on-resonance.

In Model 2 approximation, a soft p pulse is approximated by
two hard p/2 pulses and a free evolution between the two p/2
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pulses. If spins are not on-resonance, this approximation tells us
that spins will not refocus on the x axis. The magnetization before
the acquisition is easy to compute because the effect of a hard
pulse is equivalent to a rotation matrix. Appendix D.2 displays
expressions of the transverse magnetizations of approximations
of Model 2 with different phases of the echo pulses. As we see from
Figs. 1 and 2, Models 1 and 2 approximate the Hahn echo well
when the offset is negligible compared to the amplitude of the
echo pulse.

Model 3 approximation is similar to Model 1 approximation ex-
cept that it uses the effective rotation field. This model shows the
effect of offsets during a p pulse. Eqs. (D.11), (D.13) and (D.14) give
the explicit solutions of effective rotations during a finite pulse of
different phases. The calculation shows that the expressions of
the transverse magnetization given by Model 3 are the explicit ex-
act solution of the Hahn echo of the case R1 = R2 when the phase
cycling of ±x is applied.

Based on the computation of Model 3, the approximation of
Model 4 is easily computed (see Appendix D.4). Basically, the error
of this approximation is a little smaller than the one of Model 3
when the offset is smaller than the amplitude of the echo pulse
(see Figs. 1 and 2), but the expressions of the transverse magneti-
zation are more complicated than the solutions given by Model 3.
5. Measuring R2 by the Hahn echo

Measuring transverse relaxation R2 with NMR and MRI is re-
quired to estimate the motion of molecules and other dynamical
investigations [18], but making accurate R2 estimates is a challenge
due to the pulse imperfections, offset, delay, B0 and B1 inhomogene-
ity, etc. The two main methods are the Hahn echo method [50], and
the CPMG pulse sequence [55]. Ideally, they have identical echo
envelopes for viscous samples with negligible diffusion [56].
Although the CPMG method self-corrects for pulse inaccuracy [55],
it is not a trivial matter to eliminate the systematic cumulative er-
rors in the multiple pulse experiments due to other pulse imperfec-
tions [51,52,57–59], even using hard echo pulses, the measured R2

may be unreliable if kxk > 0.1cB1 [51]. Theoretically, in CPMG exper-
iments, the sample needs to start from the equilibrium only once,
but in practice, the sample also needs to return to its equilibrium
condition each time for every measurement. Thus, CPMG experi-
ments may not save experiment time. For these reasons and to sim-
plify the calculations, we restrict our method on the Hahn echo to
measure the transverse relaxation rate in this paper.

Most previous research which analyzed the error of measured
R2 focused on the offset effects [51,58,59]. But the use of cryop-
robes, further restricts the amplitude of p pulses, forcing them to
be longer-potentially as long as the delay time between the excita-
tion pulse and the echo pulse [18]. In this new situation, relaxation
must be considered in addition to the effect of offset. Phase cycling
techniques have been applied to correct measurements of R2 for
long p pulses [18,60]. Because of the difficulty of getting the sym-
bolic solution of Bloch equations, these previous studies used
numerical simulations, rotation matrices or R1q to analyze or cor-
rect errors of R2.

Generally, the measurement of R2 is obtained by solving the fol-
lowing least-square optimization problem,

min kMmeasðtÞ �MsimðtÞk2 ð26Þ

where Mmeas(t) is the measured amplitude of the transverse magne-
tization at the time point t which is acquired from the experiment,
Msim(t) is the calculated amplitude of the transverse magnetization
at the time point t using one of the models. The amplitude of the

transverse magnetization is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
. We fit the mag-
nitude of the transverse magnetization rather than the x and y com-
ponents separately in order to simplify the optimization problem by
eliminating both the numerical and experimental problems associ-
ated with phase. The objective function in the added phase dimen-
sions would be highly non-convex, with multiple local minima,
introducing a new failure mode for the optimization software.
While using the individual transverse components has, in principle,
the effect of taking an extra average, in practice, various phase er-
rors associated with timing problems need to be corrected, so the
maximum benefit would be less.

In the classical method to fit R2, the fitting function which could
be seen as Model 1 is

MðtÞ ¼ Mð0Þe�R2t ð27Þ

Because the fitting function (Eq. (27)) does not include effects of
other parameters such as offsets, pulse amplitude, pulse phase,
and R1, systematic errors of measurements of R2 which are associ-
ated with these factors cannot be eliminated. Suppressing these er-
rors of the measurement of R2 is very difficult [18,51,52,57–60].
Figs. 1 and 2 show expected errors from Model 1 in excess of 20%
when kx/cB1k > 0.1 making R2 estimates meaningless [51].

In this section, we replace the function to fit (e�R2t) with the ex-
act symbolic solution of the Bloch equations.

If the Hahn echo experiments with n different delay times are
completed, the fitting optimization problem to measure R2 is

min
Xn

j¼1

MmeasðjÞ � I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x;j þM2
y;j

q����
����

����
����

2

ð28Þ

where Mmeas(j) is the measured amplitude of the transverse magne-
tization of the delay time sj. Mx,j and My,j will be calculated by Eq.
(25) in which Exp(Ap) is generated by the exact solution of the
Bloch equations.

The fitting optimization problem is usually unconstrained if all
of intermediate variables are substituted. For example, an uncon-
strained optimization problem for the Hahn echo experiment with
echo pulses of a phase cycling of ±x can be configured by substitut-
ing Mx,j, My,j and other intermediate variables with Eqs. (11), (12),
(D.2) and (D.3) in Eq. (28). In this unconstrained optimization
problem, only I0 and R2 are variables, x, b1, tp, R1, sj, Mmeas(j) are
parameters. To solve this unconstrained problem, a lot of memory
and more time may be required to store and calculate the huge
objective function.

On the other hand, equivalent constrained optimization prob-
lems can be developed to dramatically reduce the size of the objec-
tive function and eliminate the computation of redundant terms so
as to improve the efficiency of solving the problem. For example, if
replacing Mx,j and My,j in the optimization problem (28) with Eq.
(D.3), keeping other intermediate variables, making Eqs. (11),
(12), and (D.2) as equality constraints, an equivalent constrained
optimization problem to measure R2 of applying the Hahn echo
with a phase cycling ±x can be constructed.

The fitting problem is extremely nonlinear due to the oscillation.
Despite this, we note that the first- and second-order approxima-
tions of the eigenvalues show that the oscillation is significantly
effected by the offset but not by the relaxation rates, which suggests
that the fitting problem may nevertheless be solvable. This also can
be seen in the fitting function given by Model 3 which shows that R2

appears alone in the exponential function when a phase cycling
scheme is employed (see Eq. (D.12)). These observations are vali-
dated by plotting the contour of the objective function with respect
to I0 and R2 (Fig. 5).

Errors in measured R2 caused by magnet field inhomogeneities
can be small to moderate and the upper bounds of these errors
may be determined experimentally [61], but because x and b1

are independent parameters in our models, B0 and B1 inhomogene-
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Fig. 5. Contour of the objective function with respect to I0 and R2. The objective
function (without B0 inhomogeneity) corresponds to fit the experiment of the offset
�503 Hz in Fig. 6. This figure shows that the fitting problem has a solution within
R2 2 [0, 40] and I0 2 [0,2]. When solving the fitting problem, R2 and I0 are not given
the upper bound.
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Fig. 6. Fitted curves and measured intensities. The x axis is the delay time s in
seconds, the y axis is the intensity, normalized so that the maximum measured
intensity is 1. The triangles are measured intensities, the curves are the result of
fitting Model 0 (without B0 inhomogeneity). The experiments were performed at
280 K. The offsets are 0.0, �260, �330, and �503 Hz, the measured R2 are
10.46,11.19,12.64, and 18.68 s�1, respectively. In all cases, R1 = 0.22 s�1.
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Fig. 7. Fitted curves and measured intensities, using denser sampling. Labelled as in
Fig. 6. The offsets are 0.0, �273, �341, and �511 Hz, the measured R2 are 10.35,
10.73, 11.60, and 19.15 s�1, respectively. In all cases, R1 = 0.22 s�1 and temperature
279 K.
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ities could be taken into account if the distributions of the inhomo-
geneities are known by experiment [62]. The calculated transverse
magnetization will be the average transverse magnetization com-
puted for different B0 and B1 fields.

In the data analysis, optimization models were written in A
Modeling Language for Mathematical Programming (AMPL2) [63],
and solved using Interior Point OPTimizer (IPOPT3) [64]. All solver
and parameter options were kept constant, including the initial
values.

5.1. Experiments

A series of experiments were performed on a Bruker AVANCE I
500 MHz spectrometer with a Shigemi tube at different tempera-
tures, the sample was cyclohexane and the solvent was CDCl3,
the temperatures were adjusted to 280 K or 279 K, in order to ob-
tain an appropriate R2. The amplitude of the echo pulse was equiv-
alent to 500 Hz. The duration of the echo pulse was 0.001 s. The
measured R1 was 0.22 s�1 at 280 K. Two sets of delay times were
used at two different temperatures, the first set at 280 K had 54 de-
lays of 0.0005 � j (j = 1 � � � 49) and {0.03,0.04,0.05,0.06,0.5} sec-
onds, the second set at 279 K includes 234 delays of 0.0001 � j
(j = 1 � � � 100), 0.01 + 0.001 � j (j = 1 � � � 90), 0.1000 + 0.0001 � j
(j = 1 � � �40) and {0.2,0.3,0.4,0.5} seconds. The duration of the exci-
tation pulse was 8.25 ls and the strength of the excitation pulse
was equivalent to 30,300 Hz. A CPMG experiment with high-power
pulses and the signal on-resonance gave an R2 which was the same
as the Hahn echo with the signal on-resonance. The phase cycling
of ±x of echo pulses was applied in the Hahn echo pulse sequence.
The measured intensities were obtained by the TOPSPIN software.

True R2 values are independent of offset, but both of Figs. 6 and
7 show that R2 estimates based on measurements vary for large
offsets, and more sampling points do not help to improve the fit-
ting results, so the problem is not related to measurement uncer-
tainty related to the Nyquist sampling criterion for oscillating
signals. After analyzing and numerically simulating the experi-
ments, we find that the dense sampling does not help to improve
the measurements of R2. In fact, only B0 inhomogeneity can explain
the errors in the R2 estimates from our experiments.

In order to analyze effects of the inhomogeneity, the magnetic
field inhomogeneity was estimated by the experiment popt which
is the parameter optimization on Bruker spectrometers. The mea-
2 http://www.ampl.com/; student version 20091101.
3 http://projects.coin-or.org/Ipopt; version: 3.8.1.
sured intensity at 810� is approximate to 92% of the intensity at
90� with the initial pulse length 2.5 ls and the increasing step
2.5 ls under the equivalent power 30,300 Hz. Normally, B0 and

http://www.ampl.com/
http://projects.coin-or.org/Ipopt
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B1 inhomogeneity are correlated, in order to simplify the discus-
sion, we separately simulate B0 and B1 inhomogeneity in the
following.

To simulate the B0 inhomogeneity, 15 relative offsets {�4 + 8j/
14} Hz, j from 0 to 14, with respect to O1 which is a parameter
on Bruker spectrometers to represent the irradiation frequency off-
set for the frequency channel f1 in Hz were chosen, weighted by
the Gaussian distribution e�ðx�lÞ2=ð2d2Þ=

ffiffiffiffiffiffiffiffiffiffiffi
2pd2

p
with l = 0 and d = 2.

Another way of characterizing this assumption is that the full
width of the relative offset with respect to O1 at the half height
of the Gaussian distribution is 4.7 Hz. The calculated magnetiza-
tion is the sum of the products of the weight and the magnetization
corresponding to the relative offset. With these assumptions, the
predicted intensity at 810� is 95% of the intensity at 90�. Compar-
ing the simulation with inhomogeneity to those without inhomo-
geneity, we have observed that the value of the objective
function, which measures the fit between the model and the mea-
surements, would be reduced by over 30% but the accuracy of the
R2 estimate may be improved by 10%. If the B0 inhomogeneity is
described more close to the real experiment, the fitting result
may be improved. Fig. 8 displays the results with and without B0

inhomogeneity in the models.
Similarly, we simulate the B1 inhomogeneity using a combination

of seven rf amplitudes weighted by the Gaussian distribution in
place of each discrete rf pulse. The calculated magnetization is the
sum of the products of the weight and the magnetization corre-
sponding to the rf amplitude. The rf scalers are {0.95,0.97,0.99,
1.0,1.01,1.03,1.05}, the normalized weights which are calculated
by the Gaussian distribution with l = 1 and d = 0.023 are {0.024,
0.110,0.236,0.260,0.236,0.110,0.024}. With this approximation of
the B1 inhomogeneity, the calculated intensities match the intensi-
ties of the real experiments well. But the effect on the estimated R2

values is not significant, both using real and simulated data.

5.2. Effects of other parameters to the measurements of R2

Since x, b1 and R1 are parameters in the models, their mis-cal-
ibration could also skew our estimates for R2. It is possible, in prin-
ciple, to estimate these effects by computing the first-order
derivates of the intensity with respect to these parameters, but
as previously discussed, the expressions are large, and this ap-
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Fig. 8. Estimated R2 as a function of offset, using the first set of delays at 280 K.
Circles are obtained from the model without B0 inhomogeneity, the cross symbols
are obtained from the model including B0 inhomogeneity. The model with the B0

inhomogeneity can reduce errors by 10%, giving a reasonable estimate of R2 within
the offsets ±0.7cB1. Without B0 inhomogeneity, but using the exact solution of the
Hahn echo, the estimates are still good within kxk 6 0.5cB1, contradicting the
conclusion that R2s obtained from CPMG may be meaningless when kxk > 0.1cB1

[51].
proach has been proved intractable. In this subsection, we simulate
how variations of these parameters effect R2 estimates. The results
from simulated experiments, even with parameter variations,
agree with the results from the previous subsection.

The parameters for the simulated experiments are the same as
the real experiments with R2 = 10.5 s�1. From an initial magnetiza-
tion of [1,0,0,1]T, the intensity was computed using 20-digit preci-
sion in Maple, and estimates calculated as above.

In real experiments, the offset may not be exact as we expect
due to the unstable B0 field. The simulation shows that even
�2 Hz error of the offset may result in �10% error of measure-
ments of R2. This simulation tells us that the stable B0 field is
important for accurately measuring R2 and the inhomogeneity of
the B0 field has a significant impact on the measurements of R2.

In experiments, the amplitude of pulses may be mis-calibrated,
but the simulation presents that the 2% error of the amplitude of
the echo pulse only cause �1% maximum errors in R2 when using
the phase cycling scheme to acquire the data. These experiments
are less sensitive to B1 inhomogeneity.

The fitting models require an a prior estimate of R1 to estimate
R2, but the simulations show that the errors in R2 caused by errors
in R1 are very small, and can be ignored. There are two explana-
tions for this phenomena, one is that the phase cycling eliminates
the effect of the z magnetization to the transverse magnetization,
another is that we assume the amplitude of the pulse is much big-
ger than the relaxation rates.
6. Conclusion

In this paper, the general symbolic solution of the Bloch equa-
tions is given by the Lagrange form and the explicit solution in
the case R1 = R2 is displayed. Two methods of approximating the
solution of the Bloch equations are explained, and error analysis
indicates that the methods with the effective rf field (Model 3
and Model 4) are good approximations which have simple expres-
sions. The phase cycling {/,/ + p} of rectangular pulses will elimi-
nate the effect of the z magnetization on the transverse
magnetization during the pulses, this will minimize the errors in
measured R1 and R2. And this phase cycling scheme also can be ex-
tended to the CPMG experiments to minimize the cumulative er-
rors of measurements of R2 due to pulse imperfections.

We have applied the solutions of the Bloch equations to com-
pute the Hahn echo experiments. With these calculations, models
which can exactly describe the experiments have been developed
to measure R2 using more sophisticated mathematical models. Val-
idation against both numerical simulation and actual experiment
show that accurate R2 estimates for kxk 6 0.5cB1 can be obtained
by using maximum likelihood estimates based on an exact alge-
braic solution of the Bloch equations. If the magnet field B0 inho-
mogeneity is added to the models, it is possible to improve the
accuracy of the estimates by 10%. More accurate descriptions of
the B0 inhomogeneity may result in further improvements. We also
find that the estimates are insensitive to errors in the a priori R1

values and B1 inhomogeneity. These models also eliminate the de-
lay dependence discussed in [51,52], allowing delay times shorter
than the pulse duration.

In the future, the exact solution of the Bloch equations can be
similarly applied to describe arbitrary spin-1

2 experiments. For
example, it is easy to extend the models of Hahn echo experiments
to CPMG experiments recursively. From the point of view of
numerical efficiency, it is better to solve constrained problems
including subexpressions describing physically meaningful quanti-
ties as auxiliary variables, than to eliminate these variables and
solve unconstrained problems with fewer variables. We will apply
the solution of the Bloch equations and the more general
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expansion formula (see Eq. (A.3)) of the projection operator for-
malism [4] to investigate the CPMG experiments and resulting R2

estimates, we also will apply the Lagrange form to deal with larger
systems with the Liouville space method.
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Appendix A. Theorems

The following theorem which was proved in [37] is applied to
calculate the explicit solution of eAt.

Theorem Appendix 6.1. If A is an n � n matrix with n distinct
eigenvalues k1,k2, . . . ,kn, then we have

etA ¼
Xn

k¼1

etkk LkðAÞ ðA:1Þ

where the Lk(A) are Lagrange interpolation coefficients given by

LkðAÞ ¼
Yn

j¼1;j–k

A� kjI
kk � kj

ðA:2Þ

for k = 1,2, . . . ,n.
Löwdin has illustrated a more general expansion formula

f ðAÞ ¼
X

k

f ðkkÞLkðAÞ ðA:3Þ

for any polynomial function f of A and discussed properties of pro-
jectors Lk(A) [4]. This general formula can be applied to calculate ex-
act solutions of CPMG experiments.

The following inequality which was proved in [49] gives the
boundary for the approximation of eAt when applying the sec-
ond-order split method,

Theorem Appendix 6.2. For any operators X and Y in a Banach
algebra,

ekðXþYÞ � eðk=2ÞXeðkÞYeðk=2ÞX�� �� 6 D2ðkX; kYÞ; ðA:4Þ

where D2(kX,kY) is defined as,

D2ðkX; kYÞ ¼ D̂2ðkX; kYÞexpðkkXk þ kYj jj jÞ ðA:5Þ

D̂2ðkX; kYÞ ¼ 1
12

½kX; kY	; kY½ 	k k þ 1
2
½kX; kY	; kX½ 	k k

	 

ðA:6Þ
Appendix B. Solution of the free evolution

In the Bloch equations, when b1 = 0 which represents the free
evolution decay, the eigenvalues of the matrix A have simple
expressions,

kðAðb1 ¼ 0ÞÞ ¼

�R1

�R2 þ ix
�R2 � ix

0

2
6664

3
7775 ðB:1Þ

where k(A(b1 = 0)) stands for the eigenvalues of the matrix A of
b1 = 0. The solution of eAt of b1 = 0 which can be simplified by Eq.
(14) or computed by the calssical method is
ExpðAFIDÞ �

e�tR2 cosðtxÞ �e�tR2 sinðtxÞ 0 0
e�tR2 sinðtxÞ e�tR2 cosðtxÞ 0 0

0 0 e�tR1 �e�tR1 þ 1
0 0 0 1

2
6664

3
7775
ðB:2Þ
Appendix C. The solution of the case R1 = R2

When R1 is equal to R2, eigenvalues of the matrix A have tidy
expressions,

kðAðR1 ¼ R2ÞÞ ¼

�R2

�R2 þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

1

q
�R2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

1

q
0

2
666664

3
777775 ðC:1Þ

then, ek1tL1ðAÞ, ek2tL2ðAÞ þ ek3tL3ðAÞ, and ek4tL4ðAÞ will be simplified
as

ek1tL1ðAÞ ¼ e�tR2

b2
1ðcosð/ÞÞ2

x2þb2
1

b2
1 sinð/Þ cosð/Þ

x2þb2
1

xb1 cosð/Þ
x2þb2

1
�xb1 cosð/Þ

x2þb2
1

b2
1 sinð/Þ cosð/Þ

x2þb2
1

b2
1ðsinð/ÞÞ2

x2þb2
1

xb1 sinð/Þ
x2þb2

1
�xb1 sinð/Þ

x2þb2
1

xb1 cosð/Þ
x2þb2

1

xb1 sinð/Þ
x2þb2

1

x2

x2þb2
1

� x2

x2þb2
1

0 0 0 0

2
66666664

3
77777775
ðC:2aÞ

ek2tL2ðAÞ þ ek3tL3ðAÞÞ
� �

¼ ½v1 v2 v3 v4 	 ðC:2bÞ

ek4tL4ðAÞ ¼

0 0 0 b1ðx cosð/Þþsinð/ÞR2Þ
R2

2þx2þb2
1

0 0 0 b1ðx sinð/Þ�cosð/ÞR2Þ
R2

2þx2þb2
1

0 0 0 x2þR2
2

R2
2þx2þb2

1

0 0 0 1

2
66666664

3
77777775

ðC:2cÞ

and

v1 ¼

� e�tR2 �b2
1þb2

1ðcosð/ÞÞ2�x2ð Þ cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1

� b2
1 sinð/Þ cosð/Þe�tR2 cos t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
þ sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
xe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

�xb1 cosð/Þe�tR2 cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
� sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
b1 sinð/Þe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

0

2
6666666664

3
7777777775

ðC:3aÞ

v2 ¼

� b2
1 sinð/Þ cosð/Þe�tR2 cos t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
� sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
xe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

x2þb2
1ðcosð/ÞÞ2ð Þe�tR2 cos t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1

�xb1 sinð/Þe�tR2 cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
þ sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
b1 cosð/Þe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

0

2
6666666664

3
7777777775

ðC:3bÞ

v3 ¼

�xb1 cosð/Þe�tR2 cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
þ sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
b1 sinð/Þe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

�xb1 sinð/Þe�tR2 cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1
� sin t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
b1 cosð/Þe�tR2ffiffiffiffiffiffiffiffiffiffiffi

x2þb2
1

p

b2
1e�tR2 cos t

ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1

0

2
6666666664

3
7777777775

ðC:3cÞ
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v4 ¼ e�R2t

v4;1 þ v4;2

v4;3 þ v4;4

� b2
1R2

2 cos t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �
x2þb2

1ð Þ R2
2þx2þb2

1ð Þ þ
b2

1R2 sin t
ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p� �ffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

p
R2

2þx2þb2
1ð Þ

0

2
666664

3
777775 ðC:3dÞ

with

v4;1 ¼ �
R2b1 sinð/Þðx2 þ b2

1Þ �x cosð/ÞR2

� �
cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

1

q� �

x2 þ b2
1

� �
R2

2 þx2 þ b2
1

� �
ðC:4aÞ

v4;2 ¼�
R2b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q
sinð/ÞR2þxcosð/Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� �
sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� �

x2þb2
1

� �
R2

2þx2þb2
1

� �
ðC:4bÞ

v4;3 ¼ �
R2b1 � cosð/Þ x2 � b2

1

� �
�x sinð/ÞR2

� �
cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

1

q� �

x2 þ b2
1

� �
R2

2 þx2 þ b2
1

� �
ðC:4cÞ

v4;4 ¼�
R2b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q
cosð/ÞR2þxsinð/Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� �
sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� �

x2þb2
1

� �
R2

2þx2þb2
1

� �
ðC:4dÞ

The phase cycling scheme {/,/ + p} of pulses makes the solution of
the Bloch equations of R1 = R2 to be simple which is shown in the
following expression:

etA/ þ etA/þp

2
¼

E11 E12 0 0
E21 E22 0 0
0 0 E33 E34

0 0 0 1

2
6664

3
7775 ðC:5Þ

and

E11¼e�R2t
b2

1ðcosð/ÞÞ2 1�cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q� �� �

b2
1þx2

þcos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2

q� �0
BB@

1
CCA

ðC:6aÞ

E12 ¼ e�R2t
b2

1 sinð/Þcosð/Þ 1� cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q� �� �

b2
1þx2

�
sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q� �

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

0
BB@

1
CCA

ðC:6bÞ

E21 ¼ e�R2t
b2

1 sinð/Þcosð/Þ 1� cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q� �� �

b2
1þx2

þ
sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q� �

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

0
BB@

1
CCA

ðC:6cÞ

E22 ¼
e�R2t b2

1ðsinð/ÞÞ2 þ cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q� �

x2 þ b2
1ðcosð/ÞÞ2

� �� �
b2

1 þx2

ðC:6dÞ
E33 ¼
e�R2t x2 þ cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þx2
q� �

b2
1

� �
b2

1 þx2
ðC:6eÞ

E34 ¼
E34;1

E34;2
ðC:6fÞ

with

E34;1¼ sin t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q
R2�R2

2 cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þb2

1

q� �
�x2

� �	

�e�tR2þx2þR2
2

�
b2

1þ �x4�R2
2x

2
� �

e�tR2þx4þR2
2x

2


ðC:7aÞ

E34;2 ¼ x2 þ b2
1

� �
R2

2 þx2 þ b2
1

� �n o
ðC:7bÞ

The phase cycling schemes {0,p} and {p
2, 3p

2 } even give simpler
expressions. The above equations show that the decay rate of the
transverse magnetization during a soft pulse is R2, but offsets will
affect the amplitude of the magnetizations.

Appendix D. Calculations of the Hahn echo

D.1. The exact solution with phase cycling of model 0

In this subsection, we will give the formula to compute the
transverse magnetization with intermediate variables for the Hahn
echo with a phase cycle scheme. With these intermediate vari-
ables, a constrained optimization problem can be configured to
fit the measurement of the transverse relaxation rate.

The effective matrix (Exp(Ap002)) of a pulse with phases 0 and p
can be written as

ExpðAp002Þ ¼

c11ek1tp þ d11eu2tp c12ek1tp þ d12eu2tp 0 0
c21ek1tp þ d21eu2tp c22ek1tp þ d22eu2tp 0 0

0 0 � �
0 0 0 1

2
6664

3
7775
ðD:1Þ

where �s which are non-zero are not displayed because they are
not used in the next computation, c11, c12, c21, c22, d11, d12, d21, d22

are corresponding to coefficients of entries with respect to exp(k1tp)
and exp(u2tp),

c11 ¼ �
�3x2R2 � 2x2u2 þ R3

2 þ 2R2
2u2 þ R2u2

2 þ R2u2
3

k1 k2
1 � 2k1u2 þ u2

2 þ u2
3

� � ðD:2aÞ

c12 ¼ �
4xR2u2 þxu2

2 þxu2
3 þ 3xR2

2 �x3 �xb2
1

k1 k2
1 � 2k1u2 þ u2

2 þ u2
3

� � ðD:2bÞ

c21 ¼ �c12 ðD:2cÞ

c22¼
ð2u2þR1þ2R2Þb2

1þð3R2þ2u2Þx2�R3
2�2R2

2u2þ �u2
2�u2

3

� �
R2

k1 k2
1�2k1u2þu2

2þu2
3

� �
ðD:2dÞ

d11 ¼ u2 �k1R2þx2�R2
2

� �
�3u2

3þu2
2

�nn
þR2 u2

2�u2
3

� �
3x2�R2

2þ k2
1

� �
þ k1u2 R2

2�x2
� �

k1

�
þR2 R2

2�3x2
� ��o

sinðu3tpÞþ ð3u3k1�6u3u2ÞR2ðf

þu3k
2
1�3u2

2u3þu3
3

�
x2þð�u3k1þ2u3u2ÞR3

2

þ �u3k
2
1þ3u2

2u3�u3
3

� �
R2

2þ �2u3k
2
1u2þ 3u2

2u3�u3
3

� �
k1

� �
R2
�

� cos u3tpÞ
� �

= u3 u2
2þu2

3

� �
ðk1�u2Þ2þu2

3

� �n o
ðD:2eÞ
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d12 ¼ x �k1u2 � u2
3 þ u2

2

� �
x2 þ b2

1 � 3R2
2

� ��nn
þ 2u2R2 3u2

3 � u2
2 þ k2

1

� �
þ k1u2

3ð3u2 � k1Þ
þ k1u2

2ðk1 � u2Þ
��

sinðu3tpÞ

þ �u3x x2 þ b2
1 � 3R2

2

� �
ð2u2 � k1Þ

�n
þ 2R2 u2

3 � 3u2
2 þ k2

1

� �
þ k1 u2

3 þ 2k1u2 � 3u2
2

� ���
� cos u3tpÞ

� �
= u3 u2

2 þ u2
3

� �
ðk1 � u2Þ2 þ u2

3

� �n o
ðD:2fÞ

d21 ¼ �d12 ðD:2gÞ

d22 ¼ 2u2
2�2u2

3�2k1u2
� �

R2þð�R1�3u2Þu2
3þu3

2þR1u2
2

���
þ �k2

1�R1k1
� �

u2
�
b2

1þ �3k1u2þ3u2
2�3u2

3

� �
R2þu3

2

�
� k2

1u2�3u2
3u2
�
x2þ �u2

2þ k1u2þu2
3

� �
R3

2

þ �u3
2þ k2

1u2þ3u2
3u2

� �
R2

2þ 3k1u2� k2
1

� �
u2

3þ k2
1u2

2� k1u3
2

� �
R2

o
� sinðu3tpÞþu3 ð�4u2þ2k1ÞR2þu2

3þ k2
1þR1k1

��
�3u2

2�2R1u2
�
b2

1þ ð3k1�6u2ÞR2þu2
3�3u2

2þ k2
1

� �
x2

þ 2u2� k1ÞR3
2þ �u2

3� k2
1þ3u2

2

� �
R2

2

�
þ 3k1u2

2�2k2
1u2�u2

3k1
� �

R2
�

� cos u3tpÞ
� �

= u3 u2
2þu2

3

� �
ðk1�u2Þ2þu2

3

� �n o
ðD:2hÞ

Then according to Eqs. (25), (B.2) and (D.1), the transverse magne-
tizations are

Mx;j ¼ � c22ek1tp þd22eu2tp
� �

ðsinðsjxÞÞ2þ 2c12ek1tp þ2d12eu2tp
� �n

� cos sjxÞsinðsjxÞþ c11ek1tp þd11eu2tp
� �

ðcosðsjxÞÞ2
� o

e�2R2sj

ðD:3aÞ

My;j ¼ c12ek1tp þ d12eu2tp
� �

ðsinðsjxÞÞ2 þ c11ek1tp þ d11eu2tp
�n

þ c22ek1tp þ d22eu2tp
�

cosðsjxÞ sinðsjxÞ

þ cosðsjxÞÞ2 �c12ek1tp � d12eu2tp
� �� o

e�2R2sj ðD:3bÞ

where sj is the jth delay time of a series of Hahn echo experiments.

D.2. The solutions of model 2

This subsection displays expressions of the transverse magneti-
zation which are approximated by Model 2 with different phases.

The transverse magnetizations after the pulse sequence p
2y � s�

p
2
x � tp � p

2
x � s� are

Mx;j ¼ e�2sjR2 e�tpR2 ðcosðsjxÞÞ2 cosðtpxÞ þ e�tpR1 ðsinðsjxÞÞ2
� �

ðD:4aÞ

My;j ¼ e�2sjR2 cosðsjxÞ sinðsjxÞðe�tpR2 cosðtpxÞ � e�tpR1 Þ ðD:4bÞ

The transverse magnetizations after the pulse sequence
p
2y � s� p

2x � tp � p
2x � s� are

Mx;j ¼ � e�sjR2 ð�e�ðsjþtpÞR2 ðcosðsjxÞÞ2 cosðtpxÞ
� e�sjR2�tpR1 ðsinðsjxÞÞ2 þ cosðsjxÞe�tpR2 sinðtpxÞðe�sjR1 � 1Þ
þ sinðsjxÞð�1þ e�tpR1 ÞÞ ðD:5aÞ

My;j ¼ �e�sjR2 ðcosðsjxÞ sinðsjxÞe�sjR2 ð�e�tpR2 cosðtpxÞ
þ e�tpR1 Þ þ sinðsjxÞ sinðtpxÞe�tpR2 ðe�sjR1 � 1Þ
þ cosðsjxÞð1� e�tpR1 ÞÞ ðD:5bÞ
The transverse magnetizations after the pulse sequence
p
2y � s� p

2y � tp � p
2y � s� are

Mx;j ¼ e�sjR2 ð�e�ðsjþtpÞR2 cosðtpxÞðsinðsjxÞÞ2

� e�sjR2�tpR1 ðcosðsjxÞÞ2 þ sinðsjxÞ sinðtpxÞe�tpR2 ðe�sjR1 � 1Þ

þ cosðsjxÞð1� e�tpR1 ÞÞ ðD:6aÞ

My;j ¼ �e�sjR2 ðcosðsjxÞ sinðsjxÞe�sjR2 ð�e�tpR2 cosðtpxÞ
þ e�tpR1 Þ þ cosðsjxÞe�tpR2 sinðtpxÞðe�sjR1 � 1Þ
þ sinðsjxÞð�1þ e�tpR1 ÞÞ ðD:6bÞ
The fitting models of using Model 2 approximation for different
phases and the phase cycling can be obtained by replacing Mx,j

and My,j into the optimization problem (28).
D.3. The solutions of model 3

The effective matrix of Model 3 is calculated by

ExpðApÞ ¼ ExpðARelax3Þ � ExpðAp3Þ � ExpðARelax3Þ ðD:7Þ

where Exp(ARelax3) represents the relax matrix of on-resonance, Ex-
p(Ap3) represents the general effective matrix of the pulse without
the relaxation,
ExpðARelax3Þ ¼

e�1=2tpR2 0 0 0
0 e�1=2tpR2 0 0
0 0 e�1=2tpR1 �e�1=2tpR1 þ 1
0 0 0 1

2
6664

3
7775
ðD:8Þ

ExpðAp3Þ ¼

P11 P12 P13 0
P21 P22 P23 0
P31 P32 P33 0
0 0 0 1

2
6664

3
7775 ðD:9Þ
where P11, P12, P13, P21, P22, P23, P31, P32, P33 are elements of the ma-
trix Exp(Ap3).

Thus, the general expressions of the transverse magnetization
computed by Model 3 approximation are

Mx;j ¼ e�1=2R2ð2sjþtpÞðe�1=2R2ð2sjþtpÞ cosðsjxÞðcosðsjxÞP11

þ sinðsjxÞðP12 � P21ÞÞ

þ �e�1=2R2ð2sjþtpÞP22ðsinðsjxÞÞ2 þ cosðsjxÞP13

� sinðsjxÞP23 þ e�1=2R1ð2siþtpÞð� cosðsjxÞP13

þ sinðsjxÞP23ÞÞ ðD:10aÞ

My;j ¼ e�1=2R2ð2sjþtpÞðe�1=2R2ð2sjþtpÞðcosðsixÞðsinðsjxÞðP11

þ P22Þ þ cosðsjxÞP21Þ þ P12ðsinðsjxÞÞ2Þ
þ e�1=2R1ð2sjþtpÞð� sinðsixÞP13 � cosðsjxÞP23Þ
þ sinðsjxÞP13 þ cosðsjxÞP23Þ ðD:10bÞ

The specific expressions for different phases of the echo pulse or the
phase cycling can be obtained by substituting the matrix Exp(Ap3)
which are demonstrated in the following.

The effective matrix of the pulse with the phase scheme of
phases {0,p} when the relaxation is ignored is
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ExpðAp302Þ¼

b2
1þx2 cos

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b2

1þx2
�xsin

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p 0 0

xsin
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
0 0

0 0
x2þb2

1 cos
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b2

1þx2
0

0 0 0 1

2
6666666664

3
7777777775
ðD:11Þ

which can be directly computed by setting R1,R2 to be 0 in the ma-
trix A. Subsitituting Exp(Ap3) with Exp(Ap302), the transverse mag-
netizations for this approximation are

Mx;j¼ �
xsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
sinð2sjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1þx2

q þb2
1ðcosðsjxÞÞ2

b2
1þx2

0
BB@

þ
ðx2 cosð2sjxÞ�b2

1ðsinðsjxÞÞ2Þcos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
b2

1þx2

1
CCAe�R2ð2sjþtpÞ

ðD:12aÞ

My;j ¼ 1=2
2x2þb2

1

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
b2

1þx2
þ b2

1

b2
1þx2

0
BB@

1
CCAsinð2sjxÞ

0
BB@

þ
xcosð2sjxÞsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

1
CCAe�R2ð2sjþtpÞ ðD:12bÞ

The expressions of the transverse magnetization (Eq. (D.12)) are
much simpler than the full solution of the Bloch equations, and they
provide good performance when kxk 6 cB1 or R1 � R2. This tells us
that when kxk 6 cB1, the transverse decay rate during a soft echo
pulse is approximate to the true R2, but the major factor which re-
sults in errors of the measurement of R2 is from offsets which affect
the amplitude of the exponential decay. The fitting optimization
problem constructed by Eq. (D.12) does not rely on the value of
R1, which means that it is not necessary to obtain the value of R1 be-
fore fitting R2 if the phase cycling is applied.

The effective matrix of the soft echo pulse when it is along with
the x axis and the relaxation is ignored is

ExpðAp30Þ¼

b2
1þx2 cos

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b2

1þx2 �xsin
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p �b1x cos

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
�1

� �
b2

1þx2 0

xsin
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
�sin

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b1ffiffiffiffiffiffiffiffiffiffiffi

b2
1þx2

p 0

�b1x cos
ffiffiffiffiffiffiffiffiffiffiffi
b2
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p

tp

� �
�1

� �
b2

1þx2

sin
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b1ffiffiffiffiffiffiffiffiffiffiffi

b2
1þx2

p x2þb2
1 cos

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp
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b2

1þx2
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0 0 0 1

2
66666666664
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77777777775

ðD:13Þ

The effective matrix of the pulse with the phase p
2 when the relaxa-

tion is ignored is

ExpðAp31Þ¼

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
q

tp

� �
�xsin

ffiffiffiffiffiffiffiffiffiffiffi
b2
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p
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1þx2
p

tp

� �
b2
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ffiffiffiffiffiffiffiffiffiffiffi
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1þx2
p
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� �
�1

� �
b2

1þx2 0

�sin
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p
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� �
b1ffiffiffiffiffiffiffiffiffiffiffi

b2
1þx2

p �b1x cos
ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
�1

� �
b2

1þx2

x2þb2
1 cos

ffiffiffiffiffiffiffiffiffiffiffi
b2

1þx2
p

tp

� �
b2

1þx2 0

0 0 0 1

2
66666666664

3
77777777775

ðD:14Þ

Respectively substituting Exp(Ap3) with Exp(Ap30) and Exp(Ap31)
into Eq. (D.7), the magnetization before the acquisition for phases
0 and p/2 of the echo pulse can be achieved. Clearly, if x is not
equal to 0, the entries P13 and P23 will not be zero in these two cases,
this means that the z magnetization will affect the transverse mag-
netization. Thus, the fitting models constructed for these phases re-
quire that R1 is known.

D.4. The solutions of model 4

The effective matrix of Model 4 is calculated by

ExpðApÞ ¼ ExpðAp4Þ:ExpðARelax4Þ:ExpðAp4Þ ðD:15Þ

where Exp(Ap4) is obtained by substituting tp of Eqs. (D.11), (D.13)
or (D.14) with tp/2, and Exp(ARelax4) is obtained by substituting tp of
Eq. (D.8) with 2tp, then the transverse magnetization for this
approximation of Model 4 with respect to the phase cycling, phase
0 and p/2 is calculated by Eq. (25) (results are not shown).
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